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1. Phys. A: Math. Gen. 28 (1995) 985-1003. Printed in the UK 

Biorthogonal coupling coefficients of uq(n) 

Sigitas AliSauskast 
institute of Theoretical Physics and Astronomy, GoItauto 12, Vilnius 2600, Lithuania 

Received 1 September 1994, in final form 5 December 1994 

Abstrarad. The coupling Wgner-CLebscMordan) mefficients and their isofactors for the 
unitary quanNm algebras uq(n) with the repeating irreducible representations in the coproduct 
decomposition are considered. Generalizing the U(") case, the biorthogonal systems of the u,(n) 
isofactors with the dual multiplicity labels are consflucted by means of the recoupling technique 
in terms of the isofactors with simpler multiplicity structure. A first construction, correlated 
with the inverted Littlew6Richardson d e s ,  gives the bilinear combinations of isofactors 
after applying the proportionality of the q-recoupling (Racah) coefficients to the boundary q- 
isofactors. An alternative recursive construction gives the nonorthogonal q-isofactors satisfying 
the most elementary boundary conditions aqd propoltional to the uq(n- 1) recoupling coefficients 
for some less restricted values of parameters. Some multiplicity-free and more general u,(n) 
recoupling coefficienb are found, the blocks (bilinear combinations) of, which (equal to the 
resubducing Coefficients of the complementary chains of q-algebras) are proposed to use for the 
orthonormalization of some up (n) biorthogonal isofactors, including the general uq(3) case. 

1. Introduction 

In recent years, many investigations have been devoted to the representation ;theory of 
quantized universal enveloping algebras (q-algebras) or quantum groups, which found 
applications in the theory of quantum integrable systems, statistical mechanics, conformal 
field theory, and in the phenomenologic models of atomic, molecular and nuclear 
spectroscopy. This q-representation theory is related to non-commutative geometry and 
the theory of knots and links, but it has its origin in the representation theory of usual Lie 
algebras. Many analogies between Lie and q-algebras are known, which can be extended 
to some subalgebra chains, branching rules, coupling and recoupling coefficients and the 
main structures of irreducible tensor calculus. 

Different authors considered the coupling (Clebsch-Gordan-Wigner) and recoupling 
(Racah) coefficients of the multiplicity-free quantum algebra u,(Z). Some aspects of the 
irreducible tensor calculus for the unitary quantum groups~(q-algebras) u,(n) with n > 3 
were developed by Biedenham (1990), Tolstoy (1990), Smirnov er a1 (1991b), Gould et al 
(1992), Gould (1992). Gould and Biedenham (1992), Klimyk (1992, 1993), Quesne (1992, 
1993), Lienert and Butler (1992), Pan and Chen (1993a), Smirnov and Kharitonov (1993% 
b). In a previous paper (AliSauskas and Smimov 1994), the most general multiplicity-free 
isoscalar factors (isofactors) of uq(n) coupling coefficients .(for coupling an arbitrary and 
symmetric representations) were. derived and explicit expansion of arbitrary (most general) 
isofactors in terms of the restricted boundary values was proposed. A summary of these 
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986 S AliSnuskas 

results, presented in section 2 in slightly modified form, is replenished by some new 
expressions of the multiplicity-free recoupling coefficients of U,@). 

The main purpose of this paper is the consideration of the most general coupling 
coefficients of the quantum algebra U&) with repeating irreducible representations (ieps) 
in the coproduct decomposition. As in the case of the unitary group U(n) ,  the explicit 
analytical expressions give, as a rule, only non-orthogonal systems of the U&) isofactors 
with the multiplicity labels of irreps. In sections 3 and 4, we generalize the approach 
grounded on the U(n)  recoupling technique (cf AliSauskas 1972, 1978, 1983, 1988, Chen 
1987) for the explicit construction of the biorthogonal systems of the (dual) isofactors with 
repeating irreps, respectively, formed by the bilinear combinations of isofactors and the 
isofactors satisfying the dual boundary conditions. For this purpose in the first situation, 
we use the relation between isofactors and recoupling coefficients generalized to quantum 
algebras (cf AliSauskas etal 1971, Sullivan 1973, Kramer et al 1981), wheras in the second 
situation we use the boundary propemes of the auxiliary isofactors, also demonstrating their 
proportionality to recoupling coefficients. For special values of parameters (and n > 4), 
we inevitably have a special case and this atypical construction of the ~ ~ ( 4 )  isofactors 
with distinctive boundary behaviour is presented in the appendix, together with different 
applications of the technique introduced. 

For coupling an arbitrary and a two parametric (covariant or mixed tensor) irrep of 
U,@), we express some overlaps of the coupled non-orthonormal states in terms of the 
presented q-recoupling (Racah) coefficients, equivalent to the resubducing coefficients of 
some complementary (Quesne 1992, Smirnov and Tolstoy 1992, Malashin etal 1992, 1994) 
chains of the quantum subalgebras. This system of overlaps is sufficient for the explicit 
orthogonalization of all the ~ ~ ( 3 )  isofactors to the paracanonical scheme (cf AliSauskas 
1988, 1990). 

2. Dehing relations, summary of previous results and multiplicity-free recoupling 
coefficients 

We fix the same commutation and comultiplication rules for the generators of the unitary 
quantum algebra u,(n) = U,(u(n)) as in the previous paper (Aligauskas and Smirnov 1994). 
The quantum algebra uq(n) is a deformation of the u(n) enveloping algebra. It is defined 
by generators ei,i+l, ei+l,i, i = 1,2, . . . , n -  1, and hi = e;{ ,  i = 1,2,. . . , n ,  which satisfy 
the commutation relations 

[hi, hjl = 0 (i # j )  (2.1~2) 

eij+,=[e.. ' I >  e.. 2,+1 ] q - e . . e . .  = ' I  ,I+ ,-qe.. ])+I e. .  (2.lb) 
(2.k) 

(2.14 
(2.k) 

(2.24 

(i -= j )  

ej+li = [ej+lj, ejils-! 5 ej+ljeji -q-'ejiej+lj 

[hi, ej.d = Sijeik  - Sikeji  

(i e j )  

[eik, ~ i l =  [hi - hkl 

eike,, - [21ekmkeu + e$ik = O 
and the Serre identities 

2 

(i e k e 1 or i z k z I ) ,  which may be written in terms of the q-deformed commutators 

[ [ e i k .  e&, ewl,-i = [[eix, ewl,-l. ekrlq = 0. 

[XI = - [ - X I  = (ql - q - x ) / ( q  - 4-1) 

(2.2b) 

Here and below [XI is a q-number 
(2.3~) 



lA)q 

where 

AI. A b  &-la ).,n ... 

(2.5) 
).&-I ... A1n-1 h - l  

. . . . . . . . . . . . .  
).I2 A22 

h i  

(2.7) 
d. [AI = n [hi - Aj - i + j l  

l<l<jGn 

and A = [XI ,  Xz, ..., An], p, w are partitions, satisfying the usual betweenness conditions 
and pi. vj denoting the separate rows. 

In the previous paper, the following two classes of expressions for the multiplicity-free 
isofactors appearing as the reduced mahix elements of the symmetric tensor operators of 

were also derived. In the first case, we obtained 
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where k - 1 summation parameters U;  (1 < i < k - 1) accept values 

m a x u i ,  Ai+l) < U; < min(pi, A,) 
and 

(2.10) 

In the second case, k different expressions for the same isofactors (with i = 1,2, . . . , k) 
were obtained, namely 

where k - 1 summation parameters uj (1 < j < k, j # i) accept values 

max(p;, A j )  < u j  < min(pj-1, A;), 

the factors with 0;: are omitted in dk[o] and Si$,[. . . ; . . .] on the r.h.s. and 

i-I k k 

6; = x(pj - pj + A j j  + ~j - uj 
i=.+l M , j # i  i=I 

(2.11) 

(2.12) 

k 

(2.13) - 1 ~ p - 3  C ~ j + C p J - - i + 1  + ( p - 3  01. 

The formulas (2.8) and (2.11) display quite different behaviour for extreme values of some 
parameters. Their special versions, also presented in AliSauskas and Smirnov (1994), will 
be used in sections 3 and 4. 

The general U&) 2 U& - 1) isofactors appear as the expansion coefficients (in the 
sum over the multiplicity labels of the repeating irreps of subalgebra) of the uq(n) coupling 
coefficients in terms of the uq(n - 1) coupling coefficients. Using the q-binomial expansion 
of coproducts (Smirnov er a1 1991b) and acting with operator into the coupled semi- 
maximal state of irrep A of U&) with fixed multiplicity label, the following recursive 

2 ( r  j ) i= l .  j # i  

k-I 
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expansion of arbitrary isofactors of u,(n) 3 uq(n - 1) in terms of restricted (boundary) 
isofactors was obtained by AliSauskas and Smimov (1994): 

where 

The first or the last isofactor on the r.h.s. of (2.14) may be simplified choosing U = 
[p l , .  . . , p.-21 or w = [Az, . . . , A 4  Then it is possible to see that the sum over partitions 
U', U" and the multiplicity label on the 1.h.s. of (2.14), together with q-phase factor 
is proportional to the stretched 9j-coefficient, multiplied by an elementary isofactor of 
uq(n - 1) 

(2.16) 

In the semistretched case (for A.. = A; +A: = 0), i.e. for those terms in the uq(n) coproduct 
which also appeared in the u,(n - 1) coproduct decomposition in the case of irreps denoted 
by the same partitions, the auxiliary isofactor (the last one in (2.14)) is unity and the 
general semistretched isofactor of uq(n) should be proportionalt to the uq(n - 1) recoupling 
coefficient (2.16). with 

-,, 
= 1' = A' and ,Y = A E A". 

2.2. Some multiplicity-fee recoupling coejjicients 

The simple expressions of u,(n - 1) recoupling coefficients as q 6j-coefficients were 
proposed for n = 2 by Kirillov and Reshetikhin (1988), Nomura (1989), Kachurik and 
Klimyk (1990), Smimov et a1 (1991aj. For the most general recoupling coefficients between 
the schemes (1 2)3 and I(2 3), we use the following notation: 

(2.17) 

Taking into account above-mentioned property of the semistretched U&) isofactors, in 
analogy with appendix B of AliSauskas eta! (1972). we may suppose that some recoupling 

t Unfortunakcly, the factor [Zi + 11 is omitted in the denominator under the square mot of (4.8) of AliSausk and 
Smimov (1994). used in the corresponding formulas (4.5) and (4.10) for the semistretched and stretched isofactors 

O f U q D ) .  d 
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coefficients between the schemes (1 2)3 and l(2 3) are proportional to isofactors (2.11). In 
the case of the partitions A,  A', P ,  fi', each restricted to n rows, we may write 

In this case the u4(n + 1) recoupling coefficient coincides with the uq(n) recoupling 
coefficient, the last isofactor on the rh.s. is equal to 1 and the first isofactor on the r.h.s. 
may be expressed by means of (2.1 1) with i = 1. These results, together with the symmetry 
relation (3.24) of Aliaauskas and Smirnov (1994) applied to remaining two isofactors. allow 
us to present the following expression for the multiplicity-free U&) recoupling coefficients: 

Un(p'p A' p ;  Ap'), = (-l)*Un(p A'' p* p'; A.*p'*)o (2.19a) 

(2.196) 

where 

(cf (2.21) of AliSauskas and Smirnov 1994) and n - 1 summation parameters oj (1 < j < 
n - 1) accept values 

max(l*j+l, A,+]) < uj < min(lrj, Ai+l ) ,  
The symmetry relation (2.19~) (with a phase = 0 for U,@) and u4(3)), together with 
interchange p ++ p', A U A* = [-A. ,..., -Az,-AII, p cf A", h' cf p*, &' U &I*, 

substitution U 3 U* = [-un-l,. . . , -U~, -UI ]  and relations 

S,J[A."; p*J = Sn&; AI Sn.n-i[A*; P*l = S,$-l[A; PI 

allows us to obtain an expression with different summation intervals. Of course, the 
recoupling coefficients presented above form the complete recoupling matrices. 

We may also express the following recoupling coefficients without summation: 

(2.2Oa) 

(2.2Ob) 

using equations (3.10) and (3.22) of AliSauskas and Smirnov (1994k 



Biorthogonal coupling coejjkients of u9(n) 99 1 

3. Recoupling technique and the bilinear combinations of isofactors 

Some general aspects of the biorthogonal system concept in the non-multiplicity-free group 
representation theory were considered by AliSauskas (1987, 1988). The biorthogonal 
systems of the uq(n) isofactors (for the coupling coefficients with the repeating irreducible 
representations in the coproduct decomposition) may be expressed by means of the 
recoupling technique, similarly as in the U(n) case (AliSauskas 1978, 1983, 1988). 
The different recoupled structures x e  associated either with the bilinear combinations of 
isofactors, or in contrast, with the isofactors, satisfying the dual boundary conditions. 

The first complete system of the U&) 3 uq(n - 1) isofactors may be selected from the 
following recursive relation between the isofactors and recoupling coefficients: 

where, without loss of generality, the parameters AA and A i  in partitions A’ and A“, 
respectively, are chosen to be equal to 0. The partition A”.’ = [A$,A;, . . . ,Ai]  is obtained 
from A” after deleting its first parameter A;‘ (which labels the symmetric irreps in the first 
and last isofactors.on the r.h.s.). The external multiplicity labels p ,  p,? may denote the non- 
orthogonal coupled states of the repeating irreps, but inthe sums they should be substituted 
by the couples of the dual labels (written as subscript and superscript, respectively). The 
first isofactor on the r.h.s. may be expressed according (2.8) without sum and the second by 
means of (2.14) (taking into account its semistretched case) or for the two parametric irrep 
A“ = [Ay,A;,O] (and in the general u9(3) case) by means of a specified equation, (2.11). (cf 
subsection’3.4 of AIiSauskas and Smimov 1994). The last isofactor on the r.h.s. of (3.1) 
may be expressed by means of (2.8) or (2.11). 

In  the case of the semistretched coupling of the auxiliary coproduct A’ @ A”“’ to A 
(i.e., for A,, = 0), the recoupling (Racah) coefficient of U&) on the 1.h.s. of (3.1) may be 
expressed (without use of the R-matrices) in terms of trivial sum  of isofactors 

U,(*‘ Aft‘-) PA A;; jA A“) ~ (fh”(-)(PA) Ay; A I A I ;  
9 

and is proportional to the uq(n) boundary isofactor 

U,(A’A”(-’ ph A;: jA A”)9 

(3.24 
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where 

M[Al = n[Ai - i +k]! /ddA]  ~ 

k 
for A = [Al,Az, . . . ,Ak] 

i=l 
(3.3) 

and & = Aj - Ai. Thus, we see that (3.1) and (3.2b) together allow us to present the 
bilinear combination of isofactors as the non-orthononnal isofactor 

with the unique correspondence between its extemal multiplicity label p (written as a 
subscript, with + and - indicating the fixed highest- and lowest-weight states in the 
auxiliary isofactor which appears on the r.h.s. of (3.4) as an expansion coefficient) and 
a couple [A, j}, embracing irrep A of uq(n - I), together with its multiplicity label ++ 
both restricted in accordance with the invert$ gittlewood-Richardson rules. In its turn, p 
should be determined by a simpler couple [A, j] etc. As it will be demonstrated below, 
we dispense with this step-by-step procedure, when for some subalgebra U&) we obtain a 
multiplicity-free coupling and may finish with the orthonormal isofactors of this subalgebra, 
instead of the type (3.4) expansions. Of course, in the general uq(3) case and for the two 
paramehic irrep A" = [A;',Ai,O], the external multiplicity label p is completely determined 
by intermediate irrep A. 

Suppose that the sum on the r.b.s. of (3.4) include only single term with p' = [+, -, p } .  
Then the dual isofactors (with superscript + , - . P )  should satisfy the boundary condition 

r ., 
(3.5) 

* I-) if p' = p- = A ,  p" = p". rmn = A" and [pj j }  accept values in the same region as (A p } ,  
for which the linear combinations (3.1) or (3.4) are linearly independent. For the remaining 
values of p', p", p and ij, the dual isofactors coincide with the expansion coefficients of 
arbitrary bilinear combinations of the uq(n) isofactors in terms of the complete system (3.4). 
Hence, our multiplicity resolution in isofactors is initiated by fixing two extreme basis states 
and changing the third state. 

The second isofactor on the r.h.s. of (3.1) 

may be expressed by means of the correspondingly specified equation (3.1) (with A" 
substituted by A"", A"-) substituted by A'"-'-' = [Ay, . . . , A',' replaced by q, A 
replaced by ;i with &-I = Ah-1, etc). This way we may finally establish a correspondence 
between the multiplicity label p and the set A, X, . .'. , which may be presented as a Gelfand- 
Tsetlin table for irrep A (cf Biedenham eta1 1967) 

A I ,  h,. . . , An-2. L-1, An 

A ~ > - b , ; . . - A n + A n - l  
A i ,  Az,. . . Aa-z .............. 

A', A;.. . 

(3.6) 
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and includes the variables Ai, &, etc in k- 1 rows if the partition A" is formed by k < n - 1 
non-vanishing parts. Otherwise, the inverted Littlewood-Richardson rules (correriponding 
to the decomposition of A* @ A "  to A'*) induce the following restrictions for Ai, A,. Ay, 
etc: 

A. -A: 2 An-, -Ah-, 

An + A p i  - A.-i -Ah  > An-] + A.-2 - An-2 - A:-1 
e 

................................................... 

(3.7a) 
................................................... 

................................................... 
The solution of these inequalities seems rather complicated, with exception of the k = 2 
case: 

(3.7b) 

The inequalities (3.7a) allows us to choose the sufficient diversity of the coupled states 
but we need to prove that the recursive constructions (3.1) are linearly independent for the 
different values of our multiplicity labels. The constructions presented in the next section 
and in the appendix will be useful for this purpose. 

Of course, the recursive construction (3.1) of the isofactors is also very complicated. 
Only for u,(3) the total number of sums is six. In the irrep A" = E = [ E I .  E Z ]  case, we 
have a special possibility of expressing the coupled non-orthonormal states, i.e. the bilinear 
combinations of isofactors 

(3.8a) 

in terms of the bilinear combinations of the recoupling coefficients 
CLI,(A'E~PAE,; A E ) ~  U,(A'E~PAE~;  FE)^ (3.8b) 

P 

which will be considered in section 5. 

4. Recoupling technique for the boundary expansion of U,&) isofactors 

Let us consider an alternative construction to (3.1) of the non-orthonormal uq(n) isofactors 
with the multiplicity label p and the coupling diversity generated by the different values 
of the intermediate irrep A and the multiplicity label p' from an auxiliary (corresponding 
to uq(n - 1)) coproduct A @ y decomposition. Denoting some imps as mixed tensor 
representations (e.g. [y,O,-pl, [h,--hl, [A,-hl) or contravariant symmetric irrepr [O,-pl, 
we write 
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(4.1) 

The partitions A', p', A include no more as n - 1 parts each and the partikons K ,  y ,  7, 
respectively, include no nmre as n-2 parts. Here the last parameters of irreps A and p may 
be negative, respectively, A > -h and p -h. After the correlated addition of p to the all 
parameters in the square brackets denoting irreps and in A, p, x, this notation tums into the 
usual one, in terms ofpartitions (e.g. Iy,O,-pl turns into [ n + p , .  . . . yn -~+p ,p ,O] .  [A,-h] 
tums into [Al+p ,..., A,-~+p,p-hl and A turns into [ A ~ f p  ,... ,A.-i+p] with p > h). 
The multiplicity label 7 corresponds to the decomposition of the coproduct p' @J [ ~ . - r ]  
to p in the uq(n - 1) case and 7' corresponds to the decomposition of A @J 7 to p. The 
last isofactor on the r.h.s. of (4.1) is semistretched (cf the last but one isofactor on the 
1.h.s. of (3.1)); the remaining three isofactors are multiplicity-free and may be expressed 
using the symmehies and expressions presented at the end of section 3 of AliSauskas and 
Smimov 1994 (two of them without sum). Again, the general equation (4.1) is sufficiently 
simple only in the n = 3 case when the last isofactor on the r.h.s. is multiplicity-free and 
semistretched (cf subsection 3.4 of AliSauskas and Smirnov 1994) and the total number of 
sums is six. 

We see that the construction (4.1) is possible only for h > 0; for the boundary values 
of parameters it turns into 

i.e. isofactors (4.1) are linearly independent for the all values of the multiplicity label p 
represented by the couple A and p', where p' is the multiplicity label of h in the coproduct 
A @ y decomposition. For the sake of simplicity, we omitted on the 1.h.s. of (4.1) the 
recoupling coefficient which appears in the overlaps of the non-orthogonal igofactors, namely 

A' [y,O,-p] ".+.+[A,-h] - 1%' [ A' [y,O,-p] s,+,+[A,-h] 
p' [KK.--l1 F f i  

x X U n @ ' ,  [O,-PI, "+*+[A,-hlp', ?; tA,-hl, [y,O,-pl), 
8 

xU,(h, [O,-pl, j,+,+[A,-hl', Y ;  [x,-hl, [~,O,-pl), (4.3) 

where, in tum, the external multiplicity label ,E of the 1.h.s. is represented by the couple x 
and 6'. 

The following particular case of (4.1) is especially important: 
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Equation (4.4) is valid not only for h 0 but also for A.-, + p > h{ when it may 
be derived from an alternative to (4.1) construction (with some symmetries applied.) It 
tuns into (4.2), when K = y. r = 0. Otherwise, in the remaining region (for h < 0 
and + p < A;) it gives the expansion coefficients of the once restricted isofactors 
in terms of the doubly restricted isofactors with the free parameters p’ accepting the all 
possible values (which number may exceed the multiplicity of irrep [h,-h] in the coproduct 
h‘ 8 [y,O.-p] decomposition). In its turn, (2.14) together with (4.4) gives the complete 
boundary expansion of isofactors with the fixed external multiplicity label. 

We present here the uq(3 )  3 uq(2) case of the restricted isofactor (4.4) in term of the 
1 4 2 )  6 j-coefficients .~ 

(a’b’) (d‘b”) ’‘.-.-(a b)  
(z’)i’ (z”)i” (zo)io 

in parameters used by AIiSauskas (1988) in the SU(3)  case when ,irreps are labelled as 
mixed tensor irreps (a’b‘), (a”b”), (a 6 )  with 
a =hi - A2 b = h2 As = 0 i = f(pl - p2) 

10 = z’ + z! + v (4.7) 
2’ = ” + $at.. -a)’ U = ~ ( a ‘  - b‘+ a“ - b” - a + b) 

(cf the SU(3) 3 U(2) case, see AliSauskas 1978, 1982, 1987, Pluhaf 1986). Here the 
following notation is used: 

z = hz - L(pl + p2) io = -zo = 1, 2 ~ i” 0 - - P 1 11 

I 

[U + b - C]! [U - b +C]! [U + b+c + l]! 
[ b f c - a ] !  (4.8) V [ a  b c] = 

[a + &I! [b - z  - il! [b - z + i + l]! 
[b]! [a + b + I]! G [ a b i z ] =  (4.9) 

(4.10) 

In equation (4.6), a q 6j-coefficient and the following q-phase appeared 
Q ~ , = ~ i ’ ( i ’ + 1 ) - ~ i ’ ( i ‘ + 1 ) - ~ i ” ( i ” + 1 ) + ~ i ~ ( i ~ + 1 ) + ~ ( ~ ” + 2 z ” ) ( ~ a + b + 3 ) .  

(4.1 1) 
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Note that the signs -, - in the superscript (after the multiplicity label f’) on the 1.h.s. of 
(4.6) indicate the signs of the extreme parameters z” = zg, z = zo as in AliSauskas (1978, 
1982, 1988). in contrast to AliSauskas (1983) and the general case considered in this paper. 
The symmetry relation 

(4.12) 

may be also useful. 
The recoupling structure (4.1) and other related by symmetries constructions correspond 

to six versions of the boundary conditions. For 4 3 ) .  two versions are sufficient to cover 
completely all the cases of the coproduct decomposition (cf SU(3)  case, AliSauskas 1978, 
1988). The mutual expansion coefficients of the isofactors satisfying the different boundary 
conditions form the triangular matrices, which may be inverted analytically. For example, 
let us consider equation (4.1) with K = y‘-) = [yz,. . . ,yn--2] and r = p .  We have fixed 
the summation parameters F = e and y” = y‘-) and one of isofactors on the r.h.s. equal 
to 1. For u,(3), K = y” = 0, A = p, multiplicity label is not necessary and ~ ~ ( 2 )  
recoupling coefficient on the r.h.s. is unity. Hence, equation (3.25) of AliSauskas and 
Smimov (1994) allows us to express a partial case of (4.1) in terms of the multiplicity-free 
isofactor (2.11). Accepting p’ = A’ in the second step, we obtain the expansion coefficients 
of the isofactors with superscript p ,  +, + in terms of the boundary isofactors determined 
by condition (3.5), i.e. the q-version of (2.11) of AliSauskas (1988). with the appearance of 
q-numbers, q-factorials and q-phase 
1 - -  z[i ( i  + I) - i(i + 1) - f‘(? + 1) + i’(i’ + 1) + u’(u’ + 2) - u(u + 2) 

+b‘(b‘ + 1) - b(b + 1) + U”(U - b‘ + 2) + b”(b - U’ + 1) 
+u(u” + b” - 25‘ - ZQ + b’ + b - l)]. (4.13) 

For the inverse expansion, we use the same q-version of (2.11) of AliSauskas (1988). 
together with the symmetry relation 

(o”-o)/Z+?+i+z”-i’ 3(z”+o”/Z) 
= (-1) 4 

(Q’b’) (d’b”) ’’.-,-(U b) 
(z’) i’ (z”)i” 

(cf (2.216) of AliSauskas 1988 and Klimyk 1993). In analogy with ratio of (2.19~) and 
(2.19b) of Aligauskas (1988), we may derive the boundary values of the u,(3) isofactors 
with superscript -, +, 7, as well as the expansion coefficients of the linearly dependent 
q-isofactors with subscript -, +, ? (i.e. determined by condition (3.4) in previous section) 
in terms of the linearly independent q-isofactors labelled by subscript -, +, f, with an 
additional q-power 

(4.15) 

However, even all six versions of the boundary restrictions may be insufficient to cover 

{T(?+l)-i,(i,+l)]/z 4 
after the appearance of the corresponding q-numbers and q-factorials. 

all the cases of u,(4) isofactors, which will be discussed in the appendix. 
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5. Complementary q-algebras and q-recoupling coefficients, related to the overlaps of 
the coupled states 

When the second irrep in the us(") coupling coefficient is a two-parametric (covariant 
and mixed tensor) representation and in the general u9(3) case, the overlaps of the coupled 
biorthogonal states may be expressed in terms of the explicit q-recoupling coefficients. In the 
case of the two-parametric covariant representation, they are equivalent to the resubducing 
coefficients (expressed in terms of the matrix elements of projectors) of the complementary 
(see Smirnov and Tolstoy 1992, Quesne 1992, Malashin et al 1994) chains of q-algebras. 
For this purpose, the q-boson realizations of the basis states of the k-parametric irreps 
of uq(n) 3 u9(n - 1) 3 uq(n - 2) 3 ... 3 u9(2) 3 u9(l)  (which coincide with the 
basis of the consequently decomposed coproduct of n symmetric irreps of u9(k)) should 
be considered, as well as the basis states for chain U&) 2 uq(n - 2) tB up(2) 3 . . . 
(which coincide with the coupled basis of n symmetric irreps of U&) when two last 
irreps ?e coupled previously). The transformation brackets between different uq (n) bases 
(resubducing coefficients) coincide with corresponding recoupling coefficients of uq(k), as 
well as they coincide with the (re)subduction coefficients of the different bases of the braid 
groups and Hecke algebras Pan and Chen 1993b, Pan 1993), taking into account the Schur- 
Weyl duality between u,(n) and If&). 

The bilinear combinations of the q-recoupling coefficients (3.8b) coincide with the 
resubducing coefficients between the chains of the quantum algebras uq(k) 3 u9(k - 2) 
uq(2) and uq(k) 3 uq(k - 1) 3 uq(k - Z), which may be expressed as the matrix elements 

U"().' Pk-1 Pk; un(A' P;-1QPh P;; 
P 

of the projection operator of the u9(2) subalgebra in the LijwdinShapiro form 

The first form of projector (5.2~) is more convenient for our purpose as (5.26) which includes 
the usual maximal projector P&lk (Smirnov et al 1991a,b; see also (2.11) of AliSauskas 
and Smimov 1994). Restricting the all partitions h,  A', A and p in (5.1) to such which 
include no more as n parts and using (2.6), we write the following expression for the bilinear 
combinations of the q-recoupling coefficients: 

U"@' PI 4. pz;  A +  U&' P; P ; :  
P 
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where 

and Sn,n[. . . , . . .I is defined as (2.7). The summation parameters uj ( j  = 1,2,. . . , n)  accept 
values in the region 

max(Aj, Aj+l) < uj < min(Aj, fit). 

We see that the bilinear combinations (5.3) satisfy the Regge-type symmetry (up to 
elementary factors) with respect to the permutations of the arbitmy pairs of the sum 
restricting parameters. 

Comparing the matrix elements of the projection operators in the both forms, we obtain 
the identity 

Un(A' pi ph pz;  A&)* = U.(A" pi '*A'* pz ;  A ' E ) ~ .  (5.4) 
Returning to the relation (3%) and substituting (3.84 and (3.8b), we take in (5.3) 
PI = Ez = p' 1. pz  = p;  = &I,  f i n  = A. = AA = 0 and have un = 0. Hence., the 
partial case of equation (5.2) may be simplified to n - 1 sums. In general, the expression 
(5.3) is n-independent when all its partitions contain less than n parts. 

It is expedient to use equation (4.3) with y = [a,  01, because we have the following 
expression for the bilinear combinations of the recoupling coefficients: - XU$', [O,-pnI, PA, pl; A,  [ a , o , - b ~ ) ~  U&',[~,-FA p ~ .  pi; A, [a,O,-b~)~ 

P 

) d J A 1  &[XI  

x [ a  + b + n - 11 S.,&'; AI S,,.[A'; 4 S,&; AIS,,&'; XI 
= ( [ p .  -bl! [E, -bl! [PI +b+n - I ] !  [pi +b+n - l]! 

where 
n 

pi  - pn =PI  - Pn = U  - b  z = b+C(oj - A i )  
i=l 

and A-  x, A ,  A' are sets of n non-increasing integers, differing from the partitions denoted 
by the same letters in (4.1) and (4.3), but satisfying the betweenness conditions. The 
summation parameters q are changing in the intervals - 

mu(&,  Ai) < ui < min(Ai, Ai). 

Equation (5.5) is derived from an alternative version of (5.3) after the substitution (hook 
permutation, cf AliSauskas 1978, 1983) 

(5.6) 
A + [Az,A3,. . . J . . J l+nI  [O,-pnl + [-p,-n.Ol 
[a,O,-b] 3 [-b-n,a,O] [O,-)n] + [-Pn-n,O]. 
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In correspondence with our construction (4.1) of the isofactors satisfyingelementary 
boundary conditions (4.2), we take in (5.5) a = p~ = Ft, b = p .  = Fn,  A. = An = A. and 
crn = A. is also fixed. Thus, we again have expressions with n - 1 summation parameters 
for overlaps of special uq(n) isofactors. Equations (5.3) and (5.5) cover the all cases of 
overlaps, necessary for the orthogonalization of the uq(3) isofactors. 

We see that the corresponding q-recoupling coefficients (5.3) and (5.5) may be expressed 
without the q-phases after changing the usual factorials and representation dimension factors 
in the U(n)  recoupling coefficients (AliHauskas 1972, 1978, 1983) by q-factorials and,the 
q-numbers, respectively, when definitions (2 .3~~)  and (2.3b) are used. 

Hence, we may solve the equations for the boundary uq(3) orthonormal isofactors 
of the type (3.8~) and orthogonalization coefficients in analogy with the explicit Gram- 
Schmidt procedure used for the. paracanonical coupling coefficients of SU(3) (AliSauskas 
1988, 1990). without the appearance of the summation-parameter-dependent q-phases in 
their q-polynomial structure. 
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Appendix. Non-standard construction of isofactors for uJ4) 

Solutions of the boundary value problem related to (4.1) and (4.4) by the isofactor 
symmetries are possible for the uq(4) isofactors with different versions of multiplicity 
labelling of the resulting irrep A in the coproduct A' @ A" decomposition (where A' = 
[A;,A;,A;,O], A" = [AY,Ai,Ai,O]) when the parameters of the irreps satisfy the following 
conditions: 

A i  > A4 or A3 2 A' for label p ,  +, + 
A i > h 4  or A3 > A" for +,P.+ 
AI  2 A; +'.; or A$ 2 A2 for P. - 9  - 
AI  >A;+  A; or A; 2 A2 for -1 P . ~ -  
A!,+A; > AI  or A4 >'I.; for f, -. P 
A', +A; > hl or A4 > A ;  for - 3  +, P. 

(A. 1 ) 

Therefore, for parameters in the region A; 2 h4 > A; we may use (and, of course, for 
'.; =. A4 =- A; we require) the following construction of non-orthogonal uq(4) isofactors: 

[ A 4 J 4 ,  kg1 [A;'- h4, A; - A41 
K" 

K" ~ . t.-,yP 
[A;'-A4,A$-A4] ',-*% 

( A 3  +,-.r" +.-.A 11 , K ;  1 I.L l4 X u3(/1', [A4,K'I7 +.-.p -pt*-3' 

where the diversity of the coupled states (exceeding, in general, the external multiplicity of 
A in the coproduct A' @ A" decomposition) is generated by the partition A = [A,, Ax, 1\31 

of the intermediate irrep [ A , A 4 ]  (two degrees of freedom) and two auxiliary multiplicity 
labels r' = [T;, $1 and 5'' = [T;', r;] (with a single degree of freedom each). All three 
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isofactors on the r.h.s. are semistretched (the second one only after application of some 
symmetry property). 

In order to find the linearly independent system between structures (A.2), we take 
p.’=A‘, fit‘ = A ’’I-) = [Ag,Ag] and have fixed some summation parameters K’ = [A;,O], K” = 
[A;-A4,0], U = A. The first isofactor on the r.h.s. is equal to 1 (multiplicity label Po is 
absent) and appears in accordance with definition (3.5) instead of the second isofactor 
on the r.h.s. We reduce all the rows in parritions A, A and p of the last isofactor by A4 and 
apply the inverted relation (3.26); later we similarly reduce some partitions in the u,(3) 
recoupling coefficient, again apply (3.2b) and obtain 

omitting isofactors equal to 1 of uq(4) and uq(3) for the coupling [A;,A’J 8 [A; -Ai] to 
[A’,,A;] and [Ai-A;] 8 [EI,EZ] to [&1.71-Ai,7z-A;]. All the isofactors on the r.h.s. are 
known, with exception of the middle one which, after change of parameters to 

[ [Al,A1] [A’;,Az,A;l 1 I(*) 
[ A i J i l  [A;&’] p. , 

may be expressed by means of (3.26) in terms of the uq(3) recoupling coefficients of the 
type 
U~([AI,AII .  [A;,Ay], A, A‘,‘; p., A”)o = (-l)A~-*~+A2-~2 

- 

Here using notation [O,-Al ,-AI 1 for the symmetric covariant irrep AI,  we escape shifts in 
the remaining irrep denoting partitions. The phase factor in (A.5) corresponds to the u,(3) 
isofactor symmetries, correlated with the SU(3)  case (PluhaE et al 1986). The recoupling 
coefficient on the r.h.s. may be expressed without sum by means of (2.196), taking into 
account the conjugation symmetry (2.19~). 
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The u9(3) recoupling coefficient on the r.h.s. of the boundary version of (A.2) may be 
written in analogy with (3.1) and (3.2) as a trivial sum: 

U3(A', [J-4,q:l7 +,-ppL, [A{-hI;  +'"'Av [A{ ' 3  A"]) 9 

where ul + 02 = A; +A; + Ai.  Special 2 4 3 )  isofactor for coupling of A @ [A';&'] to p 
on the 1.h.s. is included, factually, in the subscript +, - , U  of the non-orthonormal coupled 
state, according to (3.4) (but it should be not omitted in the multiplicity-free case). The 
first isofactor on the r.h.s. may be expressed by means of the generalized to u,(3) (see 
the end of section 4) expression, represented by ratio of (2.19~) and (2.19b) of AIiSauskas 
(1988). Thus, the structureof (A.6) is more complicated when U accepts more values than 
the multiplicity of A in coproduct A' @ [Ad,A;] decomposition. 

Finally, we obtain the following expression for the boundary values of (A.2) (vanishing 
for pz < A2 or p3 c A3) :  

where 

r; +r;  = ui +q =A', + A ; + A i  ~ -r;+ r" 2 - - A i + A z + A ; - A 4  

3 4 3 

pi + pz+p3 = E A r  +A'; - A4 = C h i  - A y  = CAI +A;+ A! 

i((P3 --W(pz - Az - A4 +4) + (@I - AI)(PZ - Ai - A d  

i=l i=I id 

QA 

~-(Pz - Az)(Az - 1) + (Z;'- pz)(r; + A i  - Az - A4 - 2 6 3  + Az + pz + 2) 
+(r; - Pi)(Az - Ai + 2) + (1; - A4)(A; + A4) - (A3 - A4)(A; + A4)) 

and the boundary isofactor of u9(3) 3 uq(2) on the r.h.s. of (A.7) is equal to &,,c, unless 
A; +A; t A3 and A1 > &; + A4, when its non-vanishing exceptional values . (discussed at 
the end of section 4) may appear additionally for 

ut c min(A1 - A4 + A;, Ai  + 4 + - A3). 

We obtain the complete set of the linearly independent non-orthonormal isofactors (A.2) 

(A;8) 

for uq(4) 3 up(3) after restricting the parameters to 

ri = AI for r; - r; < A; - h4 
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and 

r .  = A2 

r;'> PI r. > 112 r; = ul (and sometimes r; > q )  

for t; - -6; 2 A; - A+ (A.% 
Really, we see that the indispensable conditions far non-vanishing of (A.7) 

give a distinctive distibution of zeros for each set r', A, r", satisfying condition (A.8) or 
(A.9). In addition to the betweenness conditions and other natural restrictions of parameters 
1 1 ) s  uj 

Ai > pi > &+I 

A; +A'; 2 PI >A; +A; > ~3 

h; +A; > ~2 > A; +A; 

Pi 2 ui 2 Pi+] pi 2 hj uj > hj 

pi >&+A; 2 p.3 Ai > ~ 3  

%++$2 LLZ 

these external multiplicity distinguishing parameters should satisfy specified conditions 
(3.74: 

Using the correspondence 

1; - 1 1 1  r; ff 112 r; ff U1 (A.11) 
together with (A.8) or (A.9). we verified that the inverted Littlewood-Richardson conditions 
(A.10) are in one-to-one correspondence with the conditions for 1' and r" (cf (3.76), or (2.3) 
of AliSauskas 1988); Hence, we demonseated the completeness of (A.2) under restrictions 
(AX) or (A.9). In order to obtain the explicit isofactors satisfying the boundary condition 
(3.3, we may try to invert analytically the corresponding triangular expansion matrices 
(A.7), beginning from the diagonal with respect to 1; and u1 submatrices. 
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